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Abstract

We present an application of Ant Colony Optimisation (ACO) to simulate socio-cognitive fea-
tures of a population. We incorporated perspective taking ability to generate three different
proportions of ant colonies: Control Sample, High Altercentricity Sample, and Low Alter-
centricity Sample. We simulated their performances on the Travelling Salesman Problem and
compared them with the classic ACO. Results show that all three ’cognitively enabled’ ant
colonies require less time than the classic ACO. Also, though the best solution is found by the
classic ACO, the Control Sample finds almost as good a solution but much faster. This study
is offered as an example to illustrate an easy way of defining inter-individual interactions based
on stigmergic features of the environment.
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1 Introduction

Empathy is considered to be the warp across which the fabric of human society is woven [11].
One mechanism underlying empathy is being able to view a situation from another agents
perspective, which is termed as perspective taking. If we can model how perspective taking
influences individual agents’ behaviours in a society, and how macro-level social phenomena
emerge from their interaction, it would help us understand why some societies seem harmo-
nious whereas others are conflict ridden. It can further help us devise strategies to reduce
conflicts. These models may also provide us in developing new optimisation strategies for
traditional computational problems, based on the assumption, that diversification of computa-
tional agents and their behaviour, can lead to better exploration of the search space (similar
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to such solutions as multi-deme and coevolutionary algorithms). At the same time, we aim
to experiment with different computational models of perspective taking to study what sort of
macro-level behaviours emerge from them, and then seek to verify these behaviours through
psychological experiments in order to validate the models.

In recent years there has been an increasing synergetic interaction between biological and
cognitive systems on one hand and computational systems on the other. In one direction, for
instance, ant colonies, bird flocks, bee swarms, hippocampus of a rat, and so on, have inspired
innovative computational algorithms. In the other direction, computational techniques have
been applied to understand and model how macro phenomena emerge through micro-level
interactions of individuals in a large group. The research being carried out by our group
straddles both these aspects.

Optimization heuristics, particularly biologically-inspired techniques, have been gaining at-
tention for over 20 years. These approaches are supposed to be universal, though critics point
out high computation time and complexity of the algorithms. However, difficult problems pos-
ing challenges to deterministic approaches call for alternative strategies of solving [18], and
these may justify the above-mentioned costs.

Ant systems have proven to be a popular tool for solving many discrete optimization prob-
lems, e.g. TSP (Traveling Salesman Problem), QAD (Quadratic Assignment Problem), VRP
(Vehicle Routing Problem), GCP (Graph Coloring Problem) and others [9]. In this paper, we
consider the ant system as a way to express socio-cognitive behaviours of a population of ants,
differentiating them into species and defining their stigmergic interactions. Our main goal is
to simulate perspective taking during decision making, with the decision-making moment in
the world of ants being connected to choosing the subsequent path while standing in one of
the graph nodes. Thus, the ant system becomes a framework for analysing socio-cognitive in-
teractions by introducing different types of pheromones left by different species, and defining
particular behaviours of ants based on their detection of the concentrations of these different
types of pheromone on the paths to be selected from. It is to note that besides ACO, other
stigmergic or quasi-stigmergic systems as Particle Swarm Optimization can be considered as a
starting point for simulations, and the objects of enhancement using proposed socio-cognitive
features.

The rest of the paper is organized as follows. First ACO and its selected variants are
shortly discussed, then socio-cognitive aspects relevant for simulations are shown. Then their
incorporation into ACO system is presented, experimental results are discussed and the paper
is concluded.

2 Ant Colony Optimization: Classical and novel ap-
proaches

Ant System, introduced in 1991, applied to solve TSP, is considered to be a progenitor of
all ant colony optimization (ACO) algorithms [7]. Because the action of a certain ant during
one iteration is completely independent of the actions of other ants during any iteration, the
sequential ant algorithm can be easily parallelized.

The ACO algorithm is an iterative process during which certain number of ants (agents)
gradually create a solution [8, 9]. The problem being solved is usually depicted as a graph,
and the main goal of ants is to cross this graph somehow in an optimal way. Each move of
an ant consists in choosing a subsequent component of the solution (graph edge) with certain
probability. This decision may be affected by the interaction among the ants based on the

955



Multi-pheromone ant colony optimization. . . M. Kowalski et al.

existence of pheromones (according to stigmergy—i.e. communication using the environmental
properties for mediation among individuals instead of direct contact—rules proposed in [7])
that may be deposited into the environment (on the edges of the graph) and perceived by the
agents. The iteration process is finished when a feasible solution is created by all ants.

However, recently new interesting modifications of ACO-related techniques have been in-
troduced, namely multi-type ACO [13, 17], allowing many species of ants and defining their
stigmergic interactions (e.g. based on attraction to the pheromone of the same species and
repulsion from the other pheromones). Such algorithms were successfully applied to such prob-
lems as edge disjoint path problem [13] or light path protection [17].

There are other modifications of the classic ACO, such as hierarchical ACO, where additional
means of control are introduced to manage the output of particular ants (or ant species) [14].
In another approach, ants are endowed with different skills (e.g. sight, speed) in order to
realize global path planning for a mobile robot [12]. In a successfull approach to solve TSP,
the authors propose to use two types of ants: classic and exploratory (creating “short routes”,
moving according to some predefined conditions, e.g. near some selected cities, etc.) [10].

In [5], the authors introduce different ant sensitivity to pheromones such that ants with
higher sensitivity follow stronger pheromone trails, while ants with lower sensitivity behave
more randomly. This model strives to sustain a balance between exploration and exploitation.

Taking inspiration from these approaches, especially the ones proposed by Nowé et al. [13]
(many species of ants with detailed stigmergic interactions) and by Chira et al. (different
sensivity of the ants to the pheromones) [5] we propose a novel method of simulation and
analysis of socio-cognitive properties of individuals of a certain population. The population of
ants (and its application to TSP) is presented only an example to illustrate an easy way of
defining inter-individual interactions based on stigmergic features of the environment.

3 Incorporating social and cognitive aspects

Two factors have contributed most to a rapid growth in this field of social and cognitive simu-
lations in recent years. One is the exponential increase in the computing power, which makes it
possible to simulate very large-scale multi-agent systems in reasonable time. The other is the
availability of a huge amount of quantitative data that traces the activities of individuals and
their interaction patterns in a society [6, 4]. For example, two recent active areas of research
are how norms [1] and fairness emerge in a society [15, 16].

We focus here on perspective taking, which refers to the ability of an agent to take another
agent’s point of view. Typically, this is taken to be a one-dimensional ability: the degree to
which an agent can take another one’s perspective. But some recent research has explored a
two-dimensional approach [2], where one distinguishes between the ability of an agent to handle
conflict between its own and the other agent’s perspectives, and the relative priority given to
these two perspectives. Experimental research has suggested that these two dimensions might
be independent; and factors such as guilt or shame affect each of these dimensions individually.

Let us consider the following types of the individuals and their possible interactions:

e Egocentric individuals: they focus on their own perspective and can become creative by
finding their own new solutions to a given task. They do not get inspired by others’
actions (or the inspirations do not become a main factor of their work).

e Altercentric individuals: they focus on the perspective of others and thus follow the mass
of others. They are less creative but do end up supporting good solutions by simply
following them.
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e Good-at-conflict-handling individuals: they get inspired in a complex way by the actions
of other individuals by considering the different perspectives and choosing the best.

e Bad-at-conflict-handling individuals: they act purely randomly, following sometimes one
perspective, sometimes another without any inner logic.

The characterisation of the individuals within a population was based on realistic propor-
tions of perspective taking profiles in humans. In recent work, it has been shown that the
proportion of altercentric, egocentric, good and bad perspective conflict handlers can fluctuate
depending on situational factors. We choose three types of proportions found in humans: one
representing the proportion of perspective-taking profiles in a baseline condition (without ma-
nipulation of situational factors) and two types of proportion corresponding the effects of two
situational factors with conflicting effects on perspective taking, i.e. the effects of guilt and
anger, which heightens and lowers, respectively, the proportion of altercentric individuals [3]:

e Control Sample (baseline proportions of different types of perspective takers found in a
human sample): here the good conflict handlers are the major elements with a roughly
similar proportion of the three other types of perspective takers. Note that this is also
the sample with the highest proportion of egocentric individuals.

e Increased Good Conflict Handling Sample (proportions inspired from a sample of humans
induced to feel anger): here the proportion of good conflict handlers is further increased
compared to the control sample at the expenses of the altercentric and egocentric indi-
viduals whose proportion is now significantly decreased compared to both other samples.

e Increased Altercentricity Sample (proportions inspired from a sample of humans induced
to feel guilt): the proportion of good conflict handlers and egocentric individuals is sig-
nificantly decreased and is compensated by a higher proportion of altercentric individuals
and to a lesser extent a higher proportion of bad conflict handlers.

The samples described do not exhaust all interesting possibilities and should be treated as a
starting point for further research.

4 Socio-cognitive ant colony optimization

Starting from the definition of classic ACO, one should consider optimization of a combinatorial
problem (e.g. to find a Hamiltonian cycle in a graph as in Travelling Salesman Problem). The
method is based on agents, namely ants, that roam along the edges of the graph, finding the
exemplary cycles and leaving trails of pheromones behind them.

4.1 Classic ACO

In the classical ACO algorithm, the ants are deployed in a graph consisting of vertices V =
i,7,...;4,7 € N and edges E, where each edge is associated with a cost of moving through
it. Each ant gets a randomly chosen starting graph node. Beginning from this node, the ant
constructs its cycle in step-by-step manner, by moving from one node to another, choosing the
next one and not coming back. While considering nodes to choose from, an ant has to compute
attractiveness for all possible paths that can be taken from the present node. The attractiveness
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n;; of the edge ij starting from a node 7 ant is standing on is transformed into probability by
a simple normalization:
iy = =
Y
where j is computed only for the nodes that have not yet been visited by the ant.

Note that the exact values of n;; being the attractivenesses computed for the next edges
constituting the constructed path will be given in details in the next paragraphs.

Finally, the ant randomly selects a path based on previously computed probability — paths
with higher attractiveness are more likely to be chosen. After visiting all nodes exactly once,
the ant finishes its trip and returns the found cycle as a proposed solution, and then retreats
depositing certain amount of pheromone on the path belonging to its current cycle. The amount
of pheromone deposited in an edge e;; is denoted by 7;; and the deposition algorithm of ant ay
retreating along cycle ¢,, is as follows:

(1)

d

Zeecak cost(e) 2)

/
7T'L'j <— Tij +

where the default pheromone deposit 74 is 1, and 2’ means the = after assigning the new value,
e;; denotes edge in the cycle and cost(e;;) : E — R is a certain function assignign the cost to
the edges.
However, the pheromone evaporates in each iteration (in each edge of the graph) according
to this formula:
i = (1 —me) - m (3)

)

Default pheromone evaporation coefficient 7, is 0.01.

Classic ants consider both pheromone and distance while choosing their directions (by com-
puting path attractiveness) in order to complete the cycle. So an ant standing at node ¢ will
choose the next edge with a uniform probability, proportional to the following estimate:

(ZeimkGV(i)\{i} COSt(eik))a
cost(e;;)8

(4)

ni; =

Default factors are, pheromone influence o = 2.0, distance influence 8 = 3.0, V® does not
include the vertices already visited by the ant when reaching the vertice i.

4.2 Multi-pheromone ACO

In socio-cognitive ACO, the idea of multiple pheromones is implemented by introducing differ-
ent ‘species’ of ants and enabling their interactions (similar to the approach presented in e.g.
[13]). The interaction is considered as a partial inspiration, or even perspective taking, realized
by a particular ant reacting to the decisions taken by the ants belonging to other species. This
is made possible by having the ants of different species leave different ‘smells’ (see Fig. 1).
Different ants use different rules (consider different path’s properties) for computing attractive-
ness; and looking for inspirations or perspective taking, they utilize the smells of pheromones
left by other species in a predefined way. Therefore different species may be treated as or-
ganisms with selective smelling capabilities (subject to different combinations of the present
smells).
Therefore, we divide the set of ants into following sub-species
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Figure 1: Multi-pheromone ACO setting

EC — egocentric ants that are supposed to be creative in finding new solutions,

AC - altercentric ants that simply follow the mass of other agents,
e (GC — good-at-conflict-handling ants that get inspired by the actions of other ants,
e B(C — bad-at-conflict-handling ants, that act randomly.

Moreover, different ant species leave pheromones that ‘smell’ different, so the pheromone left
at a particular edge is described as a sum of the following components:

(EC) (AC) GC (BC

T =y mn )+ 7T£j ) 4 T ) (5)

Therefore other ants may react to different combinations of all the pheromones. Of course,
more species (and more pheromones) may be introduced into the system.

Now, based on this framework, details of the actions undertaken by various ant species are

formulated below.

Egocentric ants (elements of the FC set), are creative in trying to find a new solution and
finding their own way. They are less caring for others and for pheromone trail. Thus, they
focus mostly on the distance as a way to determine their next directions. So an ant standing
at node i will choose the next edge with an uniform probability, proportionally to the following

fraction:
1

cost(e;;)?

(6)

Default distance influence g = 3.0, again.

Altercentric ants (elements of the AC set), follow the mass of other ants (thus they focus
on the pheromone, not caring for the distance). So an ant standing at node ¢ will choose the
next edge with a uniform probability, proportionally to the following expression:

s (7)

)

Default pheromone influence a = 2.0.
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Good-at-conflict-handling ants (elements of the GC set) will wait and observe the others.
Thus, they care for all existing pheromones (the particular weights are to be determined exper-
imentally). So an ant standing at node ¢ will choose the next edge with a uniform probability,
proportionally to the following expression:

(14~7r§fc) +2.749 425 7(GO) +0.5.w?50)) (8)

vJ

Default pheromone influence o = 2.0.

Bad-at-conflict-handling ants behave impulsively (in effect randomly), irrespective of the
pheromone or the distance. So an ant at node ¢ will choose the next edge with a uniform
probability, proportionally to the following expression:

1
= 9)
Zeik,kev\{i}

5 Experimental results

The experimental results were obtained based on a dedicated software developed in Python!,
run on a typical desktop PC. We considered the Travelling Salesman Problem: based on finding
a Hamiltonian in a graph defined by a network of cities, the goal is to look for a cycle with
minimum cost (distance). The particular instance tackled was taken from TSPLIB library?.

During the experiments, the following compositions of the simulated populations regarding
the involvement of particular ants’ species were considered:

e Classic Ant Population: only ants acting as in classic ACO.

e Human-inspired sample populations:

— Control Sample Population: 22% egocentric, 15% altercentric, 45% good at conflict
handling, 18% bad at conflict handling.

— Increased Altercentricity Sample Population: 3% egocentric, 46% altercentric, 23%
good at conflict handling, 28% bad at conflict handling.

— Increased Good Conflict Handling Sample Population: 6% egocentric, 6% alter-
centric, 63% good at conflict handling, 25% bad at conflict handling.

These proportions were inspired by psycho-cognitive features observed in human populations.
In the future we plan also to identify optimal set of parameters for solving the given problem
(e.g. TSP).

The TSP instance considered was berlin52 (52 cities, best known solution: 7542).Each
simulation was repeated 12 times and average results with standard deviation were presented.
All computations were realized for 100 iterations of the algorithm using default input parameters
(described in section 4.2).

Fig. 2 shows the average fitness (with standard deviations) obtained in subsequent itera-
tions of the algorithm for different population configurations considered (TSPLIB means the

Lwww.python.org

2http://www.ivr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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best known solution of the problem). It is easy to see that though the classic ACO produces the
best solution, the Control Sample populations gives almost as good a result and much earlier
(even after about 10 iterations). The other interesting observation is the apparent premature
convergence of the other populations considered: both Conflict Handling and Altercentric con-
ditioned populations are unable to move from some local extremum found during first several
iterations. On some reflection, this is be expected, because in the Control Sample setting,

File: berlin52, Iterations: 100, Ants: 100

T T
Control Sample —+—
14000 Increased Conflict Handling ~——
Increased Altercentricity +—s—
Classic Ants ~—&—
TSPLIB

13000

- e

Path length

10000

9000 | LT
ﬂiﬂiti;-mwﬁ Kall]

8000 +

7000

10 20 30 40 50 60 70 80 90 100
Iteration

Figure 2: Average fitness for different populations, berlin52, 100 ants, 100 iterations

the major forces are good-at-conflict-handling ants and egocentric ants. The former ones take
the perspective of the latter ones, while the latter ones are specialized in solving the problem,
thereby leading to the observed result.

The results shown in Fig. 2 are summarized in Table 1 for different numbers of ants con-
sidered. An interesting feature is that when the number of ants in a population is low (like
20), again the Control Sample population becomes the best. When there are more ants, other
populations prevail (mostly classic ACO).

Table 1: The best distances found by different populations, berlin52, 100 iterations

Path distance
Population 20 ants | 50 ants | 100 ants | Best known
Classic Ants 8803.57 | 7902.11 | 7628.06 7542
Control Sample 7749.21 | 7958.52 | 7805.49
Increased Conflict Handling | 9090.96 | 9361.58 | 9390.11
Increased Altercentricity 9271.01 | 9934.18 | 9901.01

In Table 2 a summary of the simulation times are given. It is easy to see that all ‘cognitive
enabled’ populations require less computing time than classic ACO. The reason for this is the
inclusion into these populations, ants that rely on perceiving other ants (e.g. altercentric ants
that compute their attractivenes very easily by following other ants, or bad-at-conflict-handling
ants that act purely randomly).

Some final observations can be made looking at Fig. 3 that shows the best fitnesses averaged
for Control Sample population. Bad-at-conflict-handling ants (acting purely randomly) turn
out to be the worst at solving of the problem; the egocentric ants are significantly better,; but
good-at-conflict-handling ants are similar in their efficiency as the altercentric ones.
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Table 2: Summary of computation times or different populations, berlin52, 100 iterations

Computation timel[s]

Population 20 ants 50 ants 100 ants

Best | Avg | Stdev Best Avg | Stdev Best Avg | Std
Classic Ants 51.85 | 50.88 0.64 | 120.07 | 123.09 1.03 | 232.64 | 248.73 2.
Control Sample 41.49 | 41.98 0.35 | 101.07 | 103.98 0.61 | 196.00 | 204.69 1.
Increase Conflict Handling | 42.50 | 42.91 0.42 | 95.03 | 97.18 0.44 | 189.22 | 192.00 1.
Increased Altercentricity 39.40 | 39.96 0.40 | 89.61 93.08 0.54 | 178.43 | 184.20 1.

File: berlin52, Type: cs, Iterations: 100, Ants: 100

TSPLIB

25000 +

20000 [

Path length

15000

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100
Iteration

Figure 3: Average fitness for different ant species in Control Sample

6 Conclusion

Difficult problems require novel metaheuristics, so the search for new inspirations continues. Ef-
fective methods of computation may be conceived by observing socio-cognitive relations among
individuals: this was the inspiration for the research presented here. Surprisingly, our first
research goal, namely the simulation of socio-cognitive phenomena in a population of comput-
ing ants, turned out to have an interesting side-effect, namely efficient handling of the tackled
problem in certain configurations. Our main result, namely prevailing of the Control Sample
population, can be considered as somewhat expected from the socio-cognitive point of view,
as in this setting the good-at-conflict-handling individuals mostly take the perspective of the
egocentric ants (which are quite good in solving the problem as it was perceived when observing
the efficiency of the work of different species of ants) to get to the optimal solution. In the
future, we plan to expand the experiments by exploring different parameters configurations,
keeping in mind how these parameters relate with the real-world socio-cognitive phenomena.
We plan to make the constructed environment publicly available, and further extend it to focus
on a more detailed simulation of perspective taking among agents.
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